Stress Analysis II

Stress distributions in a thick walled cylinder subjected to internal pressure

(a) Tangential stress distribution

(b) Radial stress distribution

Thermal Stresses and Strains

$\varepsilon=\varepsilon_{T}+\varepsilon_{\mathrm{E}} \quad \varepsilon_{\mathrm{T}}$: Thermal strain ε_{E} : Elastic Strain

Uniform temperature change: if there is no constraint, there is no stress.

$$
\varepsilon_{\mathrm{x}}=\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{T}}+\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{E}}=0 \quad\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{E}}=-\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{T}}
$$

$$
\sigma_{\mathrm{x}}=E\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{E}}=-E\left(\varepsilon_{\mathrm{x}}\right)_{\mathrm{T}}=-E \alpha \Delta T
$$

Plane Stress:

THERMAL STRESSes arise because of temperature gradient in a member.
Infinite slab during heating and cooling:
surfaces are cooler.
Tend to contract more.

Cooling

Heating

Curved Members in Flexure

- Distribution of stress in a curved flexural member is determined by using the following assumptions.
- Cross-section has an axis of symmetry.
- Plane cross-sections remain plane after bending.
- Modulus of elasticity is the same in tension and compression

For curved beams; neutral axis is not coincident with centroidal axis, and stress distribution is not linear.
bc rotates through d Φ to $\mathrm{b}^{\prime} \mathrm{c}^{\prime}$.
Strain on a fiber at $r ; \varepsilon=\frac{\delta}{\ell}=\frac{\left(r_{n}-r\right) d \phi}{r \phi}=\frac{y d \phi}{r \phi}$
Corresponding normal stress; $\sigma=E \varepsilon=\frac{E \delta}{\ell}=\frac{E\left(r_{n}-r\right) d \phi}{r \phi}=\frac{E y d \phi}{r \phi}$..
There is no external force on the beam, therefore the sum of the normal forces on the cross-section of the beam must be zero.

$$
\begin{equation*}
\int_{A} \sigma d A=E \frac{d \phi}{\phi} \int_{A} \frac{\left(r_{n}-r\right)}{r} d A=0 \tag{c}
\end{equation*}
$$

$E \frac{d \phi}{\phi}\left(r_{n} \int_{A} \frac{d A}{r}-\int_{A} d A\right)=0$
(d) $\quad r_{n} \int_{A} \frac{d A}{r}-A=0$
$r_{n}=\frac{A}{\int_{A} \frac{d A}{r}}$
Note that location of centroid is given by $r_{c}=\frac{\int_{A} r d A}{A}$
location of neutral axis

The external moment on the beam is equal to the moment of the normal forces on the cross-section of the beam.

$$
\begin{equation*}
M=\int_{A} y \sigma d A=\int_{A}\left(r_{n}-r\right) \sigma d A=E \frac{d \phi}{\phi} \int_{A} \frac{\left(r_{n}-r\right)^{2}}{r} d A \tag{f}
\end{equation*}
$$

note that

$$
\left(r_{n}-r\right)^{2}=r_{n}^{2}-2 r_{n} r+r^{2}
$$

$$
\begin{aligned}
M & =E \frac{d \phi}{\phi}(\underbrace{r_{n}^{2} \int_{A} \frac{d A}{r}-r_{n} \int_{A} d A}-r_{n} \int_{A} d A+\int_{A} r d A) \ldots \ldots(\mathrm{g}) \\
r_{n}\left(r_{n} \int_{A} \frac{d A}{r}-\int_{A} d A\right) & =0 \\
M & =E \frac{d \phi}{\phi}(-\underbrace{r_{n}}_{A} \underbrace{A}_{\int_{A} d A}+\underbrace{\int_{A} r d A}_{r_{c} A})
\end{aligned} M=E \frac{d \phi}{\phi}\left(r_{c}-r_{n}\right) A=E \frac{d \phi}{\phi} e A,
$$

$$
\begin{aligned}
& \text { from (b) } \\
& \frac{d \phi}{\phi}=\frac{r \sigma}{E\left(r_{n}-r\right)} \\
& M=E \frac{r \sigma}{E\left(r_{n}-r\right)} e A \\
& \sigma=\frac{M\left(r_{n}-r\right)}{r e A} \\
& \text { but } \quad y=r_{n}-r \\
& \quad \begin{array}{l}
r=r_{n}-y
\end{array} \\
& \sigma=\frac{M y}{\left(r_{n}-y\right) e A} \\
& \sigma_{i}=\frac{M c_{i}}{r_{i} e A} \sigma_{o}=-\frac{M c_{o}}{r_{o} e A}
\end{aligned}
$$

If the bending moment M is due to a force F, the moment is taken about centroidal axis rather than neutral axis. Also, the direct normal stress $\pm F / A$ should be superposed with bending stress.

(a)

(c)

In curved beam problems, one needs to take the integrals;

$$
r_{n}=\frac{A}{\int_{A} \frac{d A}{r}} \text { and } r_{c}=\frac{\int_{A} r d A}{A}
$$

For some other common cross sections (Circular, trapezoidal, I, box) the integrals are listed in a table, in the text book.)

Optimum cross section:
The cross section is most efficiently utilized when the maximum tensile and compressive stresses are equal.

Then for the case of pure bending,

$$
\sigma_{i}=\sigma_{o} \quad \text { and } \quad \frac{c_{i}}{c_{o}}=\frac{r_{i}}{r_{o}}
$$

$$
r_{c}=r_{i}+h / 2
$$

Contact Stresses

- When two bodies having curved surfaces are pressed together;
- point or line contact changes to area contact
- 3D stress state develops in the vicinity of contact area (local stresses)
- stresses may cause failure such as cracking, pitting, flaking.
- Examples: wheel on rail, cam-follower, pin in a bearing, mating gear teeth, rollers on raceway of an anti-friction bearing.

Most general case occurs when both bodies have double radius of curvature.

We consider only two special cases of practical importance:
i) Contacting spheres
ii) contacting cylinders

The results presented here are due to Hertz, so the contact stresses are also called Hertzian stresses.

Contacting Spheres: Hemispherical pressure distribution is formed. Max. pressure is at the center of the circular contact area, of diameter $2 a$.

Maximum stresses occur on z-axis and these are principal stresses.

$$
\begin{aligned}
& \sigma_{x}=\sigma_{y}=-p_{\max }\left[(1+v)\left(1-\left|\frac{z}{a}\right| \tan ^{-1}\left(\frac{1}{|z / a|}\right)\right)-\frac{1}{2\left(1+z^{2} / a^{2}\right)}\right] \\
& \sigma_{z}=-\frac{p_{\max }}{1+z^{2} / a^{2}}
\end{aligned}
$$

we considered stresses only on z -axis ($\mathrm{x}=\mathrm{y}=0$) for design and analysis purposes, since the maximum stresses and the critical point (the point which is most likely to fail) are on z -axis.

The crack originates at the location of maximum shear stress, which is slightly below the surface, and propagates towards the surface.

Contacting Cylinders: Elliptical pressure distribution is formed. Max. pressure is at

Stresses along z-axis :

$\sigma_{x}=-2 v p_{\text {max }}\left[\sqrt{1+\frac{z^{2}}{b^{2}}}-\left|\frac{z}{b}\right|\right]$
$\sigma_{y}=-p_{\max }\left[\frac{1+2\left(z^{2} / b^{2}\right)}{\sqrt{1+z^{2} / b^{2}}}-2\left|\frac{z}{b}\right|\right]$
$\sigma_{z}=-\frac{p_{\max }}{\sqrt{1+z^{2} / b^{2}}}$

$$
0.3 p_{\text {max }}
$$

3D MOHR Circle

$$
\tau_{\max }=\frac{\sigma_{z}-\sigma_{y}}{2}
$$

