
Stress Analysis II



Stress distributions in a thick walled cylinder subjected to internal pressure



Thermal Stresses and Strains
e=eT+eE eT  : Thermal strain  eE : Elastic Strain

Uniform temperature change:

if there is no constraint, there is no stress.
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Plane Stress:
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THERMAL STRESSes arise because of temperature gradient in a member.

Infinite slab during heating and cooling:
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Curved Members in Flexure

• Distribution of stress in a curved flexural 

member is determined by using the 

following assumptions.

– Cross-section has an axis of symmetry.

– Plane cross-sections remain plane after 

bending.

– Modulus of elasticity is the same in tension 

and compression



For curved beams;

neutral axis is not coincident with centroidal axis, and

stress distribution is not linear.



bc rotates through dF to b'c'.

Strain on a fiber at r ;
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Corresponding normal stress;
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There is no external force on the beam, therefore the sum of the normal forces on 

the cross-section of the beam must be zero.
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The external moment on the beam is equal to the moment of the normal forces on 

the cross-section of the beam.
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If the bending moment M is due to a force F, the moment is 

taken about centroidal axis rather than neutral axis. Also, the 

direct normal stress ±F/A should be superposed with bending

stress.



In curved beam problems, one needs to 

take the integrals;
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For some other common cross sections 

(Circular, trapezoidal, I , box) the integrals 

are listed in a table, in the text book.)

Optimum cross section:

The cross section is most efficiently utilized when

the maximum tensile and compressive stresses

are equal.

Then for the case of pure bending,
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Contact Stresses

• When two bodies having curved surfaces are 

pressed together;

– point or line contact changes to area contact

– 3D stress state develops in the vicinity of contact area 

(local stresses)

– stresses may cause failure such as cracking, pitting, 

flaking.

• Examples: wheel on rail, cam-follower, pin in a 

bearing, mating gear teeth, rollers on raceway of 

an anti-friction bearing.



Most general case occurs when both bodies have double radius of curvature.

We consider only two special cases of 

practical importance:

i) Contacting spheres

ii) contacting cylinders

The results presented here are due to Hertz,

so the contact stresses are also called 

Hertzian stresses.



Contacting Spheres: Hemispherical pressure distribution is formed. Max. pressure is 

at the center of the circular contact area, of diameter 2a.
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Maximum stresses occur on z-axis and these are principal stresses.
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we considered stresses only on z-axis (x=y=0) for design and analysis purposes,

since the maximum stresses and the critical point (the point which is most likely to fail)

are on z-axis.
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 is taken as 0.3

0.3 pmax

The crack originates at the location of maximum shear stress, which is slightly

below the surface, and propagates towards the surface.



Contacting Cylinders: Elliptical pressure distribution is formed. Max. pressure is at  
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Stresses along z-axis :
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