Stress Analysis |



Stress distributions in a thick walled cylinder subjected to internal pressure

(a) Tangential stress (b) Radial stress
distribution distribution



Thermal Stresses and Strains
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Uniform temperature change:
If there is no constraint, there IS no stress.
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THERMAL STRESSes arise because of temperature gradient in a member.
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Curved Members In Flexure

 Distribution of stress in a curved flexural
member Is determined by using the
following assumptions.
— Cross-section has an axis of symmetry.

— Plane cross-sections remain plane after
bending.

— Modulus of elasticity is the same In tension
and compression
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For curved beams:

neutral axis is not coincident with centroidal axis, and

stress distribution is not linear.
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the cross-section of the beam must be zero.
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The external moment on the beam is equal to the moment of the normal forces on
the cross-section of the beam.
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If the bending moment M is due to a force F, the moment is
taken about centroidal axis rather than neutral axis. Also, the

direct normal stress +F/A should be superposed with bending
stress.
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In curved beam problems, one needs to

take the integrals;
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For some other common cross sections
(Circular, trapezoidal, | , box) the integrals
are listed in a table, in the text book.)

Optimum cross section:

The cross section is most efficiently utilized when
the maximum tensile and compressive stresses

are equal.

Then for the case of pure bending,
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Contact Stresses

« When two bodies having curved surfaces are
pressed together;
— point or line contact changes to area contact

— 3D stress state develops in the vicinity of contact area
(local stresses)

— stresses may cause failure such as cracking, pitting,
flaking.
« Examples: wheel on rail, cam-follower, pinin a

bearing, mating gear teeth, rollers on raceway of
an anti-friction bearing.



Most general case occurs when both bodies have double radius of curvature.

We consider only two special cases of
practical importance:

I) Contacting spheres

i) contacting cylinders

The results presented here are due to Hertz,
so the contact stresses are also called
Hertzian stresses.




Contacting Spheres: Hemispherical pressure distribution is formed. Max. pressure is
at the center of the circular contact area, of diameter 2a.
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Maximum stresses occur on z-axis and these are principal stresses.
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we considered stresses only on z-axis (x=y=0) for design and analysis purposes,
since the maximum stresses and the critical point (the point which is most likely to fail)
are on z-axis.
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Distance from contact surface

The crack originates at the location of maximum shear stress, which is slightly
below the surface, and propagates towards the surface.



Contacting Cylinders: Elliptical pressure distribution is formed. Max. pressure is at
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Stresses along z-axis :
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