
Stress Analysis

Part I



STRESS ANALYSIS

Design of many machine elements is governed by the stress state at the 

critical points.  

Hence the designer should be able to:

• Determine the critical points

• Determine the stress state at these points

Critical point(s) : The points on the machine element which are most 

likely to fail under given loads.

Failure : Yielding or Fracture (In this context)

Question :   How do we identify critical points then?

Answer :   Locations of maximum stress, locations of minimum 

strength, and locations where stresses are high and 

strength is low are candidates.



Example: For an end loaded cantilever beam, critical points are at the 

location of support  at the top and bottom surfaces of the beam, since the 

bending moment  and consequently the bending stress are maximum 

there. 

Furthermore if the beam has different tensile and compressive strengths 

(like concrete)  one of these locations may be even more critical.

NOTE THAT strength as well as stresses can change from point to point 

on a body. Hence there may be more than one critical point on the body. 

All of them should be checked.



Stress State:

Consider a point B on a prismatic member.

Take a cut perpendicular to the axis of the 

member through point B.
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Resultant of normal stress over 

the cross sectional area, Ac, 

gives force F.

s1=F/Ac

Now take a cut through B, which 

makes an angle b with the x-axis.
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F acting on A'
c is produced as the 

resultant of Rt and Rn.  In turn Rt and Rn

are the resultants of stresses s and t

acting on A'
c.

Question: How are s and t at point B 

related to s1 ?

Answer: Using static equilibrium equations or 

MOHR CIRCLE
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Consider a very small cubic element around point B. 

Given the uniaxial stress state s1. 

We want to find the normal and 

shear stresses on the surface 

whose normal is n. 
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Example: Consider a thin walled cylindrical pressure vessel with a helical weld 

line. Let it be given that the weld line is critical. sall (on weld line), tall (on weld 

line), r and t are given. Maximum safe internal pressure is asked. 
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Example:Consider a cylinder subjected to torsion and tension 

Points on the surface are critical. t=Tr/J s=P/A Take a section through B. 
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Upto this point all the cases considered were two dimensional. (Bi-axial) 

The stresses considered were all acting on planes whose normals are in x-y planes. 

(stresses are in x-y plane) 

Hence stresses can be represented

on a cubic element as in the figure

or in an array form as shown below.
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The cube and/or the array

represent the 2-D stress state

at a point. 

By using equilibrium it can be shown 

that txy=tyx.



In the general 3-D case, there will be 

3 more stress components as shown

in the figure. 

3-D stress state at a point is also 

represented by the array below. 
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Note that txy=tyx, txz=tzx, tzy=tyz.

Name convention: sij

i: direction of normal vector of  the surface on 

which stress acts.

j:direction of stress itself

Sign convention:

• tensile stresses are (+), 

• compressive stresses are (-).

A shear stress is (+) if it is in;

1. (+) direction, on a surface whose normal is  

in (+) direction.

2. (-) direction, on a surface whose normal is 

in (-) direction.

Otherwise shear stress is (-).

All the stresses shown above are positive.



Example:

sxx=10 szz=0

syy=-5 tyz=6

txy=-3 txz=0
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Principal stresses in 3-D are 

obtained by solving the following

eigen value problem:
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A simple special case of 3D stress state occurs when two opposite sides of the stress 

element are free from shear stresses. Then, the normal stress on these faces is a 

principal stress. The two other principle stresses can be found by 2D Mohr Circle 

analysis. (This is because superposition is applicable.)



Stresses at a point acting on a given plane is found from equilibrium of an 

infinitessimal element, shown below. SFx=0, SFy=0,SFz=0.
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In 3-D (triaxial stress state) Mohr circle can be drawn only after finding the 

principal stresses by solving the eigen value problem.

let s1>s2>s3 be the principal stresses. Max. shear stress is given by the largest 

of the 3 circles.

tmax=(s1-s3)/2
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2D Cases which we have considered earlier are special cases of the general 3-D 

case where one (or two) of the principal stresses is zero.

Uniaxial tension:  s2=s3=0
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Thin walled pressure vessel:(Bi-axial tension)

s2

s1

s1

x

y

B

s1

tmax

s2

s3=0

2-D Mohr 

Circle

Combined tension and torsion:(Bi-axial stress,s2=0)
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Note that the 2-D Mohr circle drawn may or may not give 

the maximum shear stress (which is used in design 

criteria). Therefore always draw the 3-D Mohr circle by 

taking one principal stress as zero after a two dimensional 

analysis to find tmax.
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HOOKE'S LAW:

Uniaxial loading: s E= E is Young's Modulus. 

Shear loading: t G= G is Modulus of Rigidity. 

strain  axial

strain  lateral
-=
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w(loading is axial) 

 is called Poisson Ratio.
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0.5 corresponds to incompressible materials. 
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General Stress Strain relations for İsotropic Homogeneous Materials: 
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By superposition: 
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Mohr Circle for strains can be 

drawn similar to stresses but t must 

be replaced with /2, s must be 

replaced with .



PLANE STRESS and PLANE STRAIN problems

Plane Stress: szz=txz=tyz=0

Thickness of the member in z-direction

is small, loading is in x-y plane. 
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One can solve sxx and syy in terms of

xx and yy to obtain,
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Plane Strain: zz=0 (or constant in 

generalized p. strain) , xz=yz=0

Thickness of the member in z-direction is 

very large, loading is in x-y plane and 

it is not a function of z.
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One can again solve sxx and syy in 

terms of xx and yy.



THICK WALLED CYLINDERS
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Stress state at a point in the cylinder is to be determined. 

Assumptions:

1 zz is constant. (Plane sections remain plane subsequent to loading.)

2) Problem is axisymmetric. (Stresses and diplacements are independent of q. srq=0)

3) srz=szq=0

4) Ends are free. (szz=0, If ends were close, szz would be constant.)
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SFy=0 : (sr+dsr) 2 (r+dr)-2 r sr-2 dr sq =0

y
rdsr/dr+sr-sq=0  .....(1)

(Note dr2 terms are neglected)
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sr+sq=C (=Ec'/ )

then sq=C - sr .....(2)

From (1) and (2), 

rdsr/dr+2sr=C (1st order O.D.E.) 

sr=C/2+B/r2

Solution is given as follows:

and from (2), sq=C/2-B/r2 Let C/2=A, and we obtain;

sr=A+B/r2

sq=A-B/r2



Boundary Conditions:

sr= -Pi,  r=a ,  sr= -Po ,  r=b   then,
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If ends of the cylinder are closed 
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PRESS and SHRINK FIT PROBLEMS

A contact pressure P is created at r=b. =b+-b- and b+> b >b-

Inner cylinder outer circumference reduces to 2p b from 2p b+.

Outer cylinder inner circumference expands to 2p b from 2p b-.
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Initial Interference, =b+-b- = -(b-b+) + (b-b-) =o-i
So, =o-i . 
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For the outer cylinder, at r=b : P
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Substituting (2) and (3) in (1),
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given , P can be found and vice versa.

It is assumed that members are of the same length, otherwise stress concentration 

occurs at the ends.


