Design of shafts



Introduction-1

« Shaft: A rotating member, usually of
circular cross section, used to transmit
power or motion.

e Carries machine elements such as such
as gears, pulleys, flywheels, cranks,
sprockets.

» Axle:nonrotating member that carries no
torque and is used to support rotating
wheels, pulleys



Introduction-2

« Spindle : A short shaft or axle

« Shafts are typically subjected to torsion
and bending.
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Figure 7-1

A vertical worm-gear speed
reducer. (Courtesy of the

Cleveland Gear Company.)




Design Issues

Material selection
Geometric layout

Stress and strength

— Static strength

— Fatigue strength
Deflection and rigidity

— Bending deflection
— Torsional deflection

— Slope at bearings and
shaft-supported
elements

— Shear deflection due
to transverse loading
of short shafts

* Vibration due to
natural frequency



Shaft Materials

* Mostly mild steel

* If more strength is required alloy steels
(N1, Cr, Cr-vanadium)
— heat treatment can be applied

« Shafts are usually produced by turning.
They may be polished. Crankshafts are
made by forging

» Surface hardening is usually applied.
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. oads and Stresses

 Members on the shaft (gears, pulleys, etc.)
are subjected to forces in radial, axial and
tangential directions.

* These forces create torsion, bending and
axial loading on the shaft. Distributions of
these along the shaft should be
considered to find critical sections.

* There is usually bending in two mutually
perpendicular planes.
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Static Design of Shafts
Maximum Shear Stress Theory
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max N 2n

2
Sy _ 16 (l\/l _|_9 Fj _|_'|'2 In the presence of axial load F,

2N - 7Zd3 8 diameter can not be solved in closed form.
In case F=0, diameter can be solved in closed form:
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Static Design of Shafts
Distortion Energy Theory
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Fatigue Analysis of Shafts

Shafts are subjected to a combination of
loading modes.

A common type of loading is fully reversed
bending (M,) and steady torsion (T,,).

Rather than a unique design formula, a
number of approaches exist.

The general idea Is as follows:
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Fatigue Analysis of Shafts

« Obtain mean and alternating equivalent
stresses by using static design criteria.
— Distortion energy theory - Von Mises Stress

— Maximum shear stress theory - Maximum
shear stress (on the critical plane !)

* By using these equivalent stresses apply a
fatigue design criterion such as;
— Soderberg
— Goodman
— Gerber, etc.
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Fatigue Analysis of Shafts

« Simplest approach is based on Von-Mises
Stress.

* For a rather general case, there will be
both mean and alternating shear and
normal stresses but there is no axial load.

e Then stresses are;
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Equivalent Stresses
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Fatigue Design Criteria

« Let's use Soderberg Criteria: Sa + =

Sy, n
32 3 3.2 1
seﬂd3\/(KfMa)2+Z(Kfs Taf s 7Zd3\/ 2 T
Solving d
32n( 1 3 \
d=- _ [Se \/(KfMa)z+Z(Kfs a)2+_\/ Z 2}
If Goodman were used rather than Soderberg, S, wou

be replaced by S, and yielding would be separately
checked. 18



Shaft design based on shear

Stress

« Shaft design based on shear stress is a
little bit more complicated.

* |t involves finding the critical plane.

* As an example consider a case with only
mean shear stress and alternating bending
moment.
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« Consider the plane PQ, making an angle «

with the x-axis
i
ra/
(04

T

y Q
Txym
—_—
A
L
e Gxa
X

(04

yxm

* Since we shall use shear stress, we want
o flﬂd T, + (Subscripts a and m are dropped for convenience)

2. Fpo =0

7,5~ (rsC0sa)cosa + [z, ssinaJsina + (o, ssina)cosa 50

o



O, .
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* Note that mean and alternating components of
7, are functions of «.

 For a certain ¢, the combination of ((z,).,(7,).)
will become most critical.

At this point we should also invoke a fatigue
design approach. 21
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e Let's use modified Goodman for shear
stresses.
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e Observe that cos2a = T6T
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* This Is the equation of an ellipse In the
((z,).(7,).) plane, like
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* Plotting the ellipse on modified Goodman diagram,we
note that each point on it corresponds to a certain .

* We can observe the most critical plane as the point

closest to

(),

the Goodman line.
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* The most critical point satisfies the
equations of
— the ellipse
— the load line
— the safe stress line

* Furthermore, the slope of the tangent to the
ellipse at the critical point is equal to the
slope of safe stress and modified goodman
lines.

* From the equation of ellipse;
d(Ta)a _ Ma 1

d(z,). T, tan2a #




« Equate this to slope of M. Goodman line to
get the equation of o which corresponds to
the critical plane.

(z-a )a — —k(z'a )m +1 (Goodman line)
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» Equation of load line:
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« Substituting a* In the equation of load line:
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« Substituting the equation above Into
— safe stress line, and
— equation of ellipse
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Equating square of eq. (1) to eq. (2),
 substituting definition of r,

* replacing M, with K:M_ to account for any
possible stress concentration, and

* Replacing S..=S./2, S, =S,/2,
one can solve diameter d as follows:
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» Accounting for presence of M and KT, ,
using Soderberg criterion and proceeding
In the same manner one arrives at

"Westinghouse Code Formula" which gives
diameter d as follows:
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Critical Speed of Shafts

* At certain speeds (which match resonant
frequency of the sytem consisting of the
shaft and the ensemble of attachments)
the shaft becomes unstable, with
deflections increasing without upper
bound.

* These speeds are called critical speeds.

* The lowest critical speed can be easily
estimated by Rayleigh Method.
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Critical Speed of Shafts

* According to our text book, we should
seek first critical speeds at least twice the
operating speed.

* In Rayleigh Method, the static deflection

curve Is used to estimate the lowest critical
speed.

» Rayleigh's equation overestimates the
critical speed.
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Rayleigh's Equation

* First consider a single degree of freedom

spring mass system. mg |
unstretched vibrating s T static deflection
N N
y(t) =y, Sinot
k
. y y(t) = y,wcoswt
J L (PE)nex (KE)=0 @
Ys
T (datum)
equilibrium V"™~ KE — (1)
configuration l y ( )max (PE) 0
t=0 2




ymax = Y0

Conservation of Energy between (1) and (2)

(Tz _T1)+ (ng _Vg1)+ (Ve2 _Vel): 0

(O—% mysza)zj+(mgyS —O)+(O—% kyszj =0

But K = m — ——Mgy,
Ys 2
= magy
1 1 " S
wzﬁ—myf}—mgys — o’=2 "/
2 2 -
5 my,

Rayleigh's method: (KE),,.,=(PE) ax
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Generalization to shafts

undeflected shaft

N 1
l l PE = 5 g(m1Y1 +MyY,

deflected shaft

2 my, +myy, +

Rayleigh's method: (KE),,0=(PE)nax @ = ( > >
My, +Myy, +

So the problem reduces to finding
deflections at the locations of the masses.

In the case of overhanging shafts, the loads on the
overhanging part should be reversed while finding
deflections for a better approximation.
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