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Design of shafts
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Introduction-1

• Shaft: A rotating member, usually of 

circular cross section, used to transmit 

power or motion.

• Carries machine elements such as such 

as gears, pulleys, flywheels, cranks, 

sprockets.

• Axle:nonrotating member that carries no 

torque and is used to support rotating 

wheels, pulleys
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Introduction-2

• Spindle : A short shaft or axle

• Shafts are typically subjected to torsion 

and bending.
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Design Issues

• Material selection

• Geometric layout

• Stress and strength

– Static strength

– Fatigue strength

• Deflection and rigidity

– Bending deflection

– Torsional deflection

– Slope at bearings and 

shaft-supported 

elements

– Shear deflection due 

to transverse loading 

of short shafts

• Vibration due to 

natural frequency
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Shaft Materials

• Mostly mild steel

• If more strength is required alloy steels 

(Ni, Cr, Cr-vanadium)

– heat treatment can be applied

• Shafts are usually produced by turning. 

They may be polished. Crankshafts are 

made by forging

• Surface hardening is usually applied.
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Power 
.TP 

Joule/s (Watt)

N.m

rad/s

1 HP=0.746 kW
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Loads and Stresses 

gear 1

gear 2

bearing 1 bearing 2

F1

F2

axial direction

radial direction

tangential direction
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Loads and Stresses

• Members on the shaft (gears, pulleys, etc.) 

are subjected to forces in radial, axial and 

tangential directions.

• These forces create torsion, bending and 

axial loading on the shaft. Distributions of 

these along the shaft should be 

considered to find critical sections.

• There is usually bending in two mutually 

perpendicular planes.
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Static Design of Shafts
Maximum Shear Stress Theory
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diameter can not be solved in closed form.
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Static Design of Shafts
Distortion Energy Theory
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In the presence of axial load F,

diameter can not be solved in 

closed form.

In case F=0, diameter can be solved in closed form:
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Fatigue Analysis of Shafts

• Shafts are subjected to a combination of 

loading modes.

• A common type of loading is fully reversed 

bending (Ma) and steady torsion (Tm).

• Rather than a unique design formula, a 

number of approaches exist.

• The general idea is as follows:
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Fatigue Analysis of Shafts

• Obtain mean and alternating equivalent 

stresses by using static design criteria.

– Distortion energy theory - Von Mises Stress

– Maximum shear stress theory - Maximum 

shear stress (on the critical plane !)

• By using these equivalent stresses apply a 

fatigue design criterion such as;

– Soderberg

– Goodman

– Gerber, etc.
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Fatigue Analysis of Shafts

• Simplest approach is based on Von-Mises 

Stress.

• For a rather general case, there will be 

both mean and alternating shear and 

normal stresses but there is no axial load.

• Then stresses are;
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Equivalent Stresses
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Fatigue Design Criteria

• Let's use Soderberg Criteria: nSS y
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Shaft design based on shear 

stress
• Shaft design based on shear stress is a 

little bit more complicated.

• It involves finding the critical plane.

• As an example consider a case with only 

mean shear stress and alternating bending 

moment.
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• Consider the plane PQ, making an angle a
with the x-axis 

• Since we shall use shear stress, we want 

to find ta . (Subscripts a and m are dropped for convenience)
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• Note that mean and alternating components of 

ta are functions of a.

• For a certain a, the combination of ((ta)m,(ta)a) 

will become most critical.

• At this point we should also invoke a fatigue 

design approach.
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• Let's use modified Goodman for shear 

stresses. 
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• Plotting the ellipse on modified Goodman diagram,we 

note that each point on it corresponds to a certain a.

• We can observe the most critical plane as the point 

closest to the Goodman line. 
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• The most critical point satisfies the 

equations of

– the ellipse

– the load line

– the safe stress line

• Furthermore, the slope of the tangent to the 

ellipse at  the critical point is equal to the 

slope of safe stress and modified goodman 

lines.

• From the equation of ellipse;
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• Equate this to slope of M. Goodman line to 

get the equation of a which corresponds to 

the critical plane.
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• Substituting a* in the equation of load line:
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Equating square of eq. (1) to eq. (2),

• substituting definition of r,

• replacing Ma with KfMa to account for any 

possible stress concentration, and

• Replacing Sse=Se/2, Ssu=Sut/2, 

one can solve diameter d as follows:
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• Accounting for presence of Mm and KfsTa , 

using Soderberg criterion and proceeding 

in the same manner one arrives at 

"Westinghouse Code Formula" which gives 

diameter d as follows:
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Critical Speed of Shafts

• At certain speeds (which match resonant 

frequency of the sytem consisting of the 

shaft and the ensemble of attachments) 

the shaft becomes unstable, with 

deflections increasing without upper 

bound.

• These speeds are called critical speeds.

• The lowest critical speed can be easily 

estimated by Rayleigh Method.
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Critical Speed of Shafts

• According to our text book, we should 

seek first critical speeds at least twice the 

operating speed.

• In Rayleigh Method, the static deflection 

curve is used to estimate the lowest critical 

speed.

• Rayleigh’s equation overestimates the 

critical speed.
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Rayleigh's Equation

• First consider a single degree of freedom  

spring mass system.
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Generalization to shafts
undeflected shaft

deflected shaft
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So the problem reduces to finding 

deflections at the locations of the masses.

In the case of overhanging shafts, the loads on the 

overhanging part should be reversed while finding 

deflections for a better approximation.


